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The non-Markovian Fokker-Planck equation in the energy variable for a system with a driving force is
employed to find the escape rate of a particle in a potential well. The energy-dependent diffusion
coefficient is the integral of the spectral densities of the applied force and the velocity of the system. The
escape-rate formula is applied to resonant activation of a Josephson junction by a microwave driving
current with a good comparision to experimental results.

PACS number(s): 05.40.+j, 74.50.+r

I. INTRODUCTION

A thermal activation rate may be enhanced by a reso-
nant driving force. In particular, the rate of escape from
the superconducting to the nonsuperconducting state of a
Josephson junction may be enhanced by the application
of a driving current induced by a microwave source. De-
voret et al. [1] have obtained experimental resonance
curves of the increase in activation rate versus applied
frequency.

Many authors have made calculations of the resonance
curve for this experiment, which falls into the low-
friction, low-noise category of statistical-mechanics dy-
namics problems. Larkin and Ovchinnikov [2] presented
a quantum-mechanical calculation that was extended by
Chow and Ambegaokar [3]. Carmeli and Nitzan applied
their Fokker-Planck equation to a harmonic and to a
Morse potential [4]. Ivlev and Melnikov have written
several papers on the subject [5,6]. Fonesca and Grigol-
ini used the correlation function of the velocity and the
continued-fraction approach in their work [7]. Linkwitz
and Grabert applied the results of their Ref. [8] to the
problem [9].

In this paper I will calculate the resonance curve using
a Fokker-Planck equation in the energy variable, with a
method that utilizes the spectral densities of the driving
force and the dynamical system. The main advantage of
this approach is that the spectral densities may be easily
calculated and that the energy-frequency relationship of
the dynamical system may be included in a straightfor-
ward way. Comparison to experiment yields very good
results.

II. ESCAPE RATE

For the underdamped case, the Fokker-Planck equa-
tion for the energy variable is [10-12,8]
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where {(v?) is the expectation value of the squared ve-
locity when the system is at energy E, ¥ is the damping,
and D(E) is the energy-dependent diffusion coefficient,
given by
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where S, () and S,(w) are the spectral densities of the
driving force and the velocity. The driving force f in-
cludes both the external force f(¢), and that due to the
heat bath. The underdamping leads to dephasing be-
tween its oscillations and the driving force [4] which al-
lows the interaction to be modeled adequately by the in-
tegral in (2).

One may separate the forces due to the external drive
and the heat bath, and use instead a diffusion coefficient.

D(E)=ykyT+D/(E), 3)
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where T is the temperature of the heat bath, kp is
Boltzmann’s constant, and D,(E) is defined by (2) with
Sy replaced by S fo? the spectral density of the external

driving force alone.

The very low damping case applies when the escape
time is small compared to ¥ ~'. I assume that D (E) is
small compared to AV, the height of the potential well;
that is, that ykzT and f,(¢) are small. Then the mean
first-passage time is given by
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Now D/(E) is assumed to be small compared to ykzT
and 1/D(E) is expanded to first order:
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the assumption allowing D(0)~y kT and having also as-
sumed that (v?),,=AV. When D/(E)=0, (6) reduces
to Kramer’s result [13].
Then, as the escape-rate data are usually presented,
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where 7, is the Kramer’s mean first-passage time with no
driving force. When D/(E) is a constant independent of
E, this is similar to the result of Fonesca and Grigolini
[7]. The next task is to calculate D ((E).

III. CALCULATION OF THE SPECTRAL DENSITIES

A. Dynamical system

The dimensionless equation describing the Josephson
junction is

X +yx +sinx =py+ f(1) , (8)

where x represents the current through the junction, ¥ is
the damping, p, is the bias current, and f(z) is the ap-
plied driving current. (Now v in the previous section is
not the “velocity” but the time derivative of x.)

A cubic approximation to the potential for Eq. (8)

V(x)=—(cosx —cosxy)—polx —xy) , 9)
is given by

X2=hUx —x;Nx —x,)(x—x3), (10)
with

h*=2E /(xg—x)(xg—x,)(xg—xX3), 1y

where x,, x,, and x; are given by the values of x for
which V(x)=E (Fig. 1), and x, is the value of x at the
potential minimum. x(#) can be found by standard
methods of nonlinear equations [14]. It is

x(t)=(x,—x,)sn’(hMt,k)+x, , (12)
where sn is a Jacobi elliptic function and
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sn(hAMt) is an odd function of period 4K /hM, where
K =K (k), the elliptic K function. Then sn(AMt) has the
period 2K /hM. The Fourier expansion of sn(AMt) shows
that unless E is extremely close to AV, the motion is very
sinusoidal. Figure 2 shows the square of the second
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FIG. 1. Plot of potential function vs x. Solid line: V(x) from
Eq. (9). Dashed line: approximation from Eq. (11) for E =0.3.

Fourier coefficient of sn’(AMt) in relation to the square of
the first as a function of energy for a value of the supply
current used in the experiment of Devoret et al. [1].
Therefore we can approximate the dynamics of x as
occurring in a quadratic potential with angular frequency
mhM /K =wg. Thus [15],
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FIG. 2. Plot of the ratio of the square of first Fourier
coefficient of sn?>(hMt), s,, to the square of the second, s,, vs en-
ergy. Energy is normalized to E,, defined in Eq. (19). The plot
shows that except when its value is very near the barrier height,
nearly all of the energy is contained in the first harmonic.
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B. Driving force

As for S fo(a)), fo(t) is a sinusoidal driving force of an-

gular frequency Q. If the amplitude f, were constant,
then we would have

2
Sfo(co)=[2£8(a)—0.) . (16)

In the experiment of Devoret et al. [1], due to the
configuration of the microwave signal, the junction and
its loading circuitry are supplied with a constant voltage.
This is so because the special filter they use between the
microwave source and the circuit has very high im-
pedance. Since Eq. (8) is in terms of the current, the fre-
quency dependence of the admittance of the circuit must
be taken into account. In terms of the applied voltage
Vac

V2.Cc20?

Sfo(w)= Ic2

(w—Q), 17

C is the capacitance of the circuit, which dominates the
admittance in an unshunted junction, and I, is to normal-
ize f,(2) to the dimensionless units.

IV. CALCULATION OF THE DIFFUSION
COEFFICIENT AND THE ESCAPE RATE

Performing the integration over w for D/(E), we find
__ Eowpyvicial
4mI2[(0f — 02 +y2Q%]

D/(E,Q) (18)

The factor Ecwf,l has been added to convert the units
from dimensionless to real. E, is the critical energy of
the junction, given by

E, ¢,

Ze 0 19
I 27’ (19)

c
where ®y=h /2¢=2.07X 107" Vs. w is the junction’s
plasma frequency.

If the capacitance of the loading circuitry is small, we
can take C as the capacitance of the junction itself. Then
using

2 27l (20)
W= ,
Po,C
Eq. (18) reduces to
vic 4
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V2.C is the energy stored in the junction.

Now the integral in Eq. (7) can be carried out to find
—In(7/7¢). This is done numerically for a value of the
source current used in the experiment (Fig. 3). The fit
was found by adjusting the frequency and height scales to
match the data near the peak, and y to match the right-
hand tail of the data.

The experiment is used to indirectly obtain values for
junction parameters. From the fit for p=0.524, /27 is
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FIG. 3. Plot of normalized mean first-passage time vs fre-
quency for the driven Josephson junction. The frequency is nor-
malized to w,. Solid line: Eq. (7) using Eq. (21) with y=0.02.
Vertical and horizontal scales have also been fitted. Diamonds:
experimental results from Fig. 9(a) of Ref. [1]. The normalized
dc current is 0.524.

found to be 5.81X10° sec”!. This compares with the

value found by the experimentalists, 5.87X10° sec™ .
The value of I, was stated as 3.09X 1076 A. With

27l
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we get C=6.96X10" 12 F.

The fit was not very sensitive to y, but ¥y =0.020 is a
reasonable value. Then using

%prlRC ) (23)

, (22)

we find R =196().

V. DISCUSSION

The main features of this paper are as follows.

(i) Spectral densities were used in the calculation of the
energy-dependent diffusion coefficient. The advantage
here is that these values are readily known or calculated.
Also, on the conceptual level intuition concurs that the
amount of diffusion of the system is directly proportional
to the amount of overlap between the frequencies of the
driving force and the oscillator, as described by Eq. (2).
This spectral density method is possible because the low
damping of the system leads to dephasing between the
driving and system variables.

(ii) The energy-frequency dependence of the oscillator
has been taken into account in the spectral densities. The
qualitative shape of the resonance curve, with its low-
frequency tail and sharp dropoff at higher frequencies,
can be understood by the fact that Eq. (8) describes a soft
oscillator; its resonant frequency decreases with energy.
The low-frequency tail corresponds to higher energies of
oscillation, whose corresponding frequencies of oscilla-
tion can go all the way to zero, and the cutoff is around
the minimum energy of the oscillator, whose correspond-
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ing frequency marks the upper limit of the resonant fre-
quencies of the oscillator. Higher applied frequencies do
excite the system somewhat, and for a sinusoidal driving
force one can show that the zero-energy frequency is at
approximately the half maximum of the resonance curve.
Below this frequency the resonance curve is described
qualitatively by (dw/dE )™}, where w is the frequency of
the oscillator at energy E. The maximum of the reso-
nance curve is found at the frequency which maximizes
this quantity. Intuitively, there are less frequencies here
in a given energy range, inhibiting the oscillator from
diffusing away to a frequency different from that applied.
Thus the oscillator can collect more energy at this ap-
plied frequency than others.

(iii) There is an effective frequency dependence of the
driving force, due to the admittance of the junction. This
affects the shape of the resonance curve at higher fre-

quencies, e.g., the high-frequency tail has become closer
to experiment with the inclusion of this effect.

The work presented in this paper was relatively simple
because the dynamical system was underdamped, at low
temperature, nearly harmonic, and driven by a low-
amplitude driving force which was sinusoidal. It is
perhaps the simplest application of the method described.
The assumptions may be relaxed somewhat, but it is
necessary that the damping and the escape rate be small
for the spectral density method to be valid.
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